

UAV Trajectory Modeling Using Neural Networks

Min Xue

NASA Ames Research Center Moffett Field, CA

AIAA Aviation Forum, 5-9 June 2017

Motivation

Trajectory models are required for traffic management study

Objective: Study the feasibility of modeling trajectory using Neural Networks

Outline

- Approach
 - General trajectory model
 - Neural Network method
- Experiment
- Summary

Conventional Trajectory Model

$$\begin{aligned} &\text{Moment} & \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{J_y - J_z}{J_x} q r \\ \frac{J_z - J_x}{J_y} p r \\ \frac{J_x - J_y}{J_z} p q \end{bmatrix} + \begin{bmatrix} \frac{1}{J_y} M_{\dot{\phi}} \\ \frac{1}{J_y} M_{\dot{\phi}} \end{bmatrix} & & \text{Dynamics} \\ & \vdots \\$$

Neural Network Trajectory Model

NN captures both dynamics and controller

Neural Network Structure

Multiple Layer Perceptron (MLP) Neural Network

Outline

- Approach
- Experiment
 - Data generation
 - Training
 - Trajectory prediction
- Summary

Data generation – Quadrotor trajectory model

Dynamics:

$$\begin{bmatrix} \dot{x} \\ \dot{x} \\ \dot{y} \\ \dot{y} \\ \ddot{z} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} \ddot{x} + \omega_e \\ -(\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi)F_z/m \\ \ddot{y} + \omega_n \\ (-\cos\phi\sin\theta\sin\psi + \sin\phi\cos\psi)F_z/m \\ -g + \cos\phi\cos\theta F_z/m \\ M_{\phi}/J_x \\ M_{\theta}/J_y \\ M_{\psi}/J_z \end{bmatrix}$$

Controller: [proportional-derivative (PD)]

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} = \begin{bmatrix} k_p(x_d - x) + k_d(\dot{x}_d - \dot{x}) \\ k_p(y_d - y) + k_d(\dot{y}_d - \dot{y}) \end{bmatrix}$$

$$\begin{bmatrix} \phi_d \\ \theta_d \end{bmatrix} = \frac{m}{F_z} \begin{bmatrix} -\sin\psi & -\cos\psi \\ \cos\psi & -\sin\psi \end{bmatrix}^{-1} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix}$$

$$\begin{bmatrix} M_{\phi} \\ M_{\theta} \end{bmatrix} = \begin{bmatrix} k_{p,\phi}(\phi_d - \phi) + k_{d,\phi}(\dot{\phi}_d - \dot{\phi}) \\ k_{p,\theta}(\theta_d - \theta) + k_{d,\theta}(\dot{\theta}_d - \dot{\theta}) \end{bmatrix} l$$

$$k_{p,\phi} = 4.5, k_{d,\phi} = 0.5, k_{p,\theta} = 4.5, k_{d,\theta} = 0.5, k_p = 7.5, k_d = 4.2$$

Training Setup

Total 35 trajectories in horizontal plane:

Parameters	Values	Units		
Desired ground speed	2,5,8,11,12,13,14,15	m/s		
Cross wind speed	3-5 selected values in [1.0, 9.5]	m/s		

Trajectory #i (~20 s):

Training Performance: Forward-position Errors

Training Performance: All Output Errors

Trajectory Prediction Approach

desired trajectory

NN predicted trajectory

actual trajectory

Position Error in Spatial Dimension

Position Error in Temporal Dimension

Forward Speed Error

Prediction Verification Cases

12 prediction cases:

Case	1a	1b	1c	2a	2b	2c	3a	3b	3c	4a	4b	4c
Vehicle ground speed (m/s)	2.0	2.0	2.0	5.0	5.0	5.0	8.0	8.0	8.0	11.0	11.0	11.0
Cross wind speed (m/s)	0.7	2.4	7.5	0.9	5.0	8.6	1.4	6.7	9.5	1.9	4.0	9.2

Prediction Verification

- Forward speed error increases with the vehicle speed
- Lateral speed error increases with the cross wind speed
- All errors are smaller than 2 m
- Spatial errors are smaller than temporal errors

Summary

- Proposed a Neural Network based approach for UAV trajectory prediction
- Conducted experiments using a sample vehicle trajectory model
- The concept is promising with the trajectory prediction accuracy of two meters

Future Work

- Perform experiments using data collected from flight tests
- Extend the application to vertical direction
- Explore different machine learning methods and setups

Questions?

Email: min.xue@nasa.gov